Thursday, 22 March 2012

Mtech Questions for Cpp



ADSA LAB PROGRAMS LIST

 1)  Write a C++ Program for stacks using linked list ?
         
ans:

/*Program for implementing stack using linked list.*/

#include<iostream>
#include<conio.h>
#include<stdlib.h>

class node
{
      public:
             class node *next;
             int data;
};

class stack : public node
{
            node *head;
            int tos;
      public:
             stack()
               {
                    tos=-1;
               }
             void push(int x)
              {      
              if (tos < 0 )
                  {
                     head =new node;
                     head->next=NULL;
                     head->data=x;
                     tos ++;
                   }
             else
                  {
                    node *temp,*temp1;
                     temp=head;
                     if(tos >= 4)
                      {
                      cout <<"stack over flow";
                        return;
                         }
                     tos++;
                     while(temp->next != NULL)
                          temp=temp->next;
                     temp1=new node;
                     temp->next=temp1;
                     temp1->next=NULL;
                     temp1->data=x;
                   }
                }
             void display()
               {
                  node *temp;
                  temp=head;
                  if (tos < 0)
                    {
                        cout <<" stack under flow";
                        return;
                     }
                  while(temp != NULL)
                     {
                        cout <<temp->data<< " ";
                        temp=temp->next;
                     }
               }
              void pop()
                {
                   node *temp;
                   temp=head;
                   if( tos < 0 )
                    {
                       cout <<"stack under flow";
                       return;
                    }                
                    tos--;
                    while(temp->next->next!=NULL)
                      {
                      temp=temp->next;
                       }
                    temp->next=NULL;
                 }
};
main()
{
stack s1;
int ch;
while(1)
{
cout <<"\n1.PUSH\n2.POP\n3.DISPLAY\n4.EXIT\n enter ur choice:";
cin >> ch;
switch(ch)
     {
case 1:   cout <<"\n enter a element";
                   cin >> ch;
                   s1.push(ch);
                   break;
case 2:   s1.pop();break;




case 3:   s1.display();
                    break;
case 4:   exit(0);
}
     }
return (0);
}
/*
OUTPUT
1.PUSH 2.POP 3.DISPLAY 4.EXIT
enter ru choice:1
enter a element23
1.PUSH 2.POP 3.DISPLAY 4.EXIT
enter ru choice:1
enter a element67
1.PUSH 2.POP 3.DISPLAY 4.EXIT
enter ru choice:3
23 67
1.PUSH 2.POP 3.DISPLAY 4.EXIT
enter ru choice:2
1.PUSH 2.POP 3.DISPLAY 4.EXIT
enter ru choice:3
23
1.PUSH 2.POP 3.DISPLAY 4.EXIT
enter ru choice:2
1.PUSH 2.POP 3.DISPLAY 4.EXIT
enter ru choice:2
stack under flow
1.PUSH 2.POP 3.DISPLAY 4.EXIT
enter ru choice:4
*/
 2) Write a C++ Program for queues using linked list ?

#include<conio.h>  
#include<iostream.h>
#include<process.h>
#include<malloc.h>

//   Creating a NODE Structure
struct node
{
   int data;
   struct node *next;
};

// Creating a class QUEUE
class queue
{
   struct node *frnt,*rear;
   public:
      queue() // constructure
      {
frnt=rear=NULL;
      }
      void insert(); // to insert an element
      void del();  // to delete an element
      void show(); // to show the stack
};
// Insertion
void queue::insert()
{
   int value;
   struct node *ptr;
   cout<<"\nInsertion\n";
   cout<<"Enter a number to insert: ";
   cin>>value;
   ptr=new node;
   ptr->data=value;
   ptr->next=NULL;
   if(frnt==NULL)
      frnt=ptr;
   else
      rear->next=ptr;
   rear=ptr;
   cout<<"\nNew item is inserted to the Queue!!!";
   getch();
}

// Deletion
void queue::del()
{
   if(frnt==NULL)
   {
      cout<<"\nQueue is empty!!";
      getch();
      return;
   }
   struct node *temp;
   temp=frnt;
   frnt=frnt->next;
   cout<<"\nDeletion Operation........\nDeleted value is "<<temp->data;
   delete temp;
   getch();
}

// Show Queue
void queue::show()
{
   struct node *ptr1=frnt;
   if(frnt==NULL)
   {
      cout<<"The Queue is empty!!";
      getch();
      return;
   }
   cout<<"\nThe Queue is\n";
   while(ptr1!=NULL)
   {
      cout<<ptr1->data<<" ->";
      ptr1=ptr1->next;
   }
   cout<<"END";
   getch();
}

void main()
{
   clrscr();
   queue q;
   int choice;
   while(1)
   {
      cout<<"\n";
      cout<<"\n\tQUEUE USING LINKED LIST\n\n";
      cout<<"1:INSERTION\n2:DELETION\n3:DISPLAY QUEUE\n4:EXIT";
      cout<<"\nEnter your choice(1-4): ";
      cin>>choice;
      switch(choice)
      {
       case 1:
 q.insert();
 break;
       case 2:
 q.del();
 break;
       case 3:
 q.show();
 break;
       case 4:
 exit(0);
 break;
       default:
 cout<<"Please enter correct choice(1-4)!!";
 getch();
 break;
       }
   }
   getch();
}

 3) Write a C++ Program for Implementation of
            i) BFS   ii) DFS
ans:

#include<iostream>
#include<conio.h>
#include<stdlib.h>
using namespace std;
int cost[10][10],i,j,k,n,qu[10],front,rare,v,visit[10],visited[10];

main()
{
int m;
cout <<"enterno of vertices";
cin >> n;
cout <<"ente no of edges";
cin >> m;
cout <<"\nEDGES \n";
for(k=1;k<=m;k++)
{
cin >>i>>j;
cost[i][j]=1;
}

cout <<"enter initial vertex";
cin >>v;
cout <<"Visitied vertices\n";
cout << v;
visited[v]=1;
k=1;
while(k<n)
{
for(j=1;j<=n;j++)
if(cost[v][j]!=0 && visited[j]!=1 && visit[j]!=1)
{
visit[j]=1;
qu[rare++]=j;
}
v=qu[front++];
cout<<v << " ";
k++;
visit[v]=0; visited[v]=1;
}
}
/*
OUTPUT
enterno of vertices9
ente no of edges9
EDGES
1 2
2 3
1 5
1 4
4 7
7 8
8 9
2 6
5 7
enter initial vertex1
Visited vertices
12 4 5 3 6 7 8 9
*/


/* Write C++ programs for the implementation of Depth-first search(DFS) for a given graph */
#include<iostream>
#include<conio.h>
#include<stdlib.h>
using namespace std;
int cost[10][10],i,j,k,n,stk[10],top,v,visit[10],visited[10];

main()
{
int m;
cout <<"enterno of vertices";
cin >> n;
cout <<"ente no of edges";
cin >> m;
cout <<"\nEDGES \n";
for(k=1;k<=m;k++)
{
cin >>i>>j;
cost[i][j]=1;
}

cout <<"enter initial vertex";
cin >>v;
cout <<"ORDER OF VISITED VERTICES";
cout << v <<" ";
visited[v]=1;
k=1;
while(k<n)
{
for(j=n;j>=1;j--)
if(cost[v][j]!=0 && visited[j]!=1 && visit[j]!=1)
{
visit[j]=1;
stk[top]=j;
top++;
}
v=stk[--top];
cout<<v << " ";
k++;
visit[v]=0; visited[v]=1;
}
}
/*
OUTPUT
enterno of vertices9
ente no of edges9
EDGES
1 2
2 3
2 6
1 5
1 4
4 7
5 7
7 8
8 9
enter initial vertex1
ORDER OF VISITED VERTICES1 2 3 6 4 7 8 9 5
*/


 4) Write a C++ Program for Implemenations of
       i) Bubble Sort     ii) Quick sort   iii) Merge Sort


ans:(i)

#include <iostream>
#include<conio.h>


template <class X>
void bubble(X *data, int size)
{
  register int a, b;
  X t;

  for(a=1; a < size; a++)
    for(b=size-1; b >= a; b--)
      if(data[b-1] > data[b]) {
        t = data[b-1];
        data[b-1] = data[b];
        data[b] = t;
      }
}

void main()
{
  int i[] = {3, 2, 5, 6, 1, 8, 9, 3, 6, 9};
  double d[] = {1.2, 5.5, 2.2, 3.3};
  int j;

  bubble(i, 10); // sort ints
  bubble(d, 4);  // sort doubles

  for(j=0; j<10; j++)
     cout << i[j] << ' ';
  cout << endl;

  for(j=0; j<4; j++)
     cout << d[j] << ' ';
  cout << endl;

getch()
}

(ii)

#include<process.h>
#include<iostream.h>
#include<conio.h>
#include<stdlib.h>

int Partition(int low,int high,int arr[]);
void Quick_sort(int low,int high,int arr[]);

void main()
{
int *a,n,low,high,i;
clrscr();
cout<<"/**************************Quick Sort Algorithm
Implementation*****************/

";
cout<<"Enter number of elements:
";
cin>>n;

a=new int[n];
/* cout<<"enter the elements:
";
for(i=0;i<n;i++)
cin>>a;*/
for(i=0;i<n;i++)
a[i]=rand()%100;
clrscr();
cout<<"
Initial Order of elements
";
 for(i=0;i<n;i++)
  cout<<a[i]<<" ";
  cout<<"
";

high=n-1;
low=0;
Quick_sort(low,high,a);
cout<<"
Final Array After Sorting:
";

  for(i=0;i<n;i++)
  cout<<a[i]<<" ";

getch();
}

/*Function for partitioning the array*/

int Partition(int low,int high,int arr[])
{ int i,high_vac,low_vac,pivot/*,itr*/;
   pivot=arr[low];
   while(high>low)
{ high_vac=arr[high];

  while(pivot<high_vac)
  {
    if(high<=low) break;
    high--;
    high_vac=arr[high];
  }

  arr[low]=high_vac;
  low_vac=arr[low];
  while(pivot>low_vac)
  {
    if(high<=low) break;
    low++;
    low_vac=arr[low];
  }
  arr[high]=low_vac;
}
  arr[low]=pivot;
   return low;
}

void Quick_sort(int low,int high,int arr[])
{
  int Piv_index,i;
  if(low<high)
  {
   Piv_index=Partition(low,high,arr);
   Quick_sort(low,Piv_index-1,arr);
   Quick_sort(Piv_index+1,high,arr);
  }
}

//merge sort

#include<stdio.h>
#include<conio.h>


void getdata(int arr[],int n)
{
 int i;
  printf("enter the data:\n");
  for(i=0;i<n;i++)
    {
     scanf("%d",&arr[i]);
    }
}


void display(int arr[],int n)
{
 int i;
 printf("


");
 for(i=0;i<n;i++)
    {
     printf("%d ",arr[i]);
    }
 getchar();
}


void sort(int arr[],int low,int mid,int high)
{
 int i,j,k,l,b[20];
 l=low;
 i=low;
 j=mid+1;
 while((l<=mid)&&(j<=high))
   {
    if(arr[l]<=arr[j])
      {
       b[i]=arr[l];
       l++;
      }
    else
      {
       b[i]=arr[j];
       j++;
      }
    i++;
   }
 if(l>mid)
   {
    for(k=j;k<=high;k++)
       {
        b[i]=arr[k];
        i++;
       }
   }
 else
   {
    for(k=l;k<=mid;k++)
       {
        b[i]=arr[k];
        i++;
       }
   }
 for(k=low;k<=high;k++)
    {
     arr[k]=b[k];
    }
}


void partition(int arr[],int low,int high)
{
 int mid;
 if(low<high)
   {
    mid=(low+high)/2;
    partition(arr,low,mid);
    partition(arr,mid+1,high);
    sort(arr,low,mid,high);
   }
}




void main()
{
 int arr[20];
 int n;
 printf("Enter number of data:");
 scanf("%d",&n);
 getdata(arr,n);
 partition(arr,0,n-1);
 display(arr,n);
 getch();
}


  5) Write a C++ Program for BST Operations
            i) Insertion         ii) Deletion

/*C++ program to implement Binary Search Tree(BST) and its Operations*/
#include<iostream.h>
#include<conio.h>
class btree
{
private :
struct node
{
node *left ;
char data ;
node *right ;
} *root ;
char *arr ;
int *lc ;
int *rc ;
public :
btree ( char *a, int *l, int *r, int size ) ;
void insert ( int index ) ;
static node* buildtree ( char *a, int *l, int *r, int index ) ;
void display( ) ;
static void inorder ( node *sr ) ;
~btree( ) ;
static void del ( node *sr ) ;
} ;
btree :: btree ( char *a, int *l, int *r, int size )
{
root = NULL ;
arr = new char[size] ;
lc = new int[size] ;
rc = new int[size] ;
for ( int i = 0 ; i < size ; i++ )
{
* ( arr + i ) = * ( a + i ) ;
* ( lc + i ) = * ( l + i ) ;
* ( rc + i ) = * ( r + i ) ;
}
}
void btree :: insert ( int index )
{
root = buildtree ( arr, lc, rc, index ) ;
}
node* btree :: buildtree ( char *a, int *l, int *r, int index )
{
node *temp = NULL ;
if ( index != -1 )
{
temp = new node ;
temp -> left = buildtree ( a, l, r, * ( l + index ) ) ;
temp -> data = * ( a + index ) ;
temp -> right = buildtree ( a, l, r, * ( r + index ) ) ;
}
return temp ;
}
void btree :: display( )
{
inorder ( root ) ;
}
void btree :: inorder ( node *sr )
{
if ( sr != NULL )
{
inorder ( sr -> left ) ;
cout << sr -> data << "\t" ;
inorder ( sr -> right ) ;
}
}
btree :: ~btree( )
{
delete arr ;
delete lc ;
delete rc ;
del ( root ) ;
}
void btree :: del ( node *sr )
{
if ( sr != NULL )
{
del ( sr -> left ) ;
del ( sr -> right ) ;
}
delete sr ;
}
void main( )
{
char a[ ] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', '\0', '\0', 'H' } ;
int  l[ ] = {  1,   3,   5,   -1,   9,  -1,  -1,   -1,   -1,  -1 } ;
int  r[ ] = {  2,   4,   6,   -1,  -1,  -1,  -1,   -1,   -1,  -1 } ;
int sz = sizeof ( a ) ;
        clrscr();
btree bt ( a, l, r, sz ) ;
bt.insert( 0 ) ;
cout << "\nIn-order Traversal: " << endl ;
bt.display( ) ;
        getch();
}


  6) Write a C++ Program for Prims algorithm  ?
Ans:

#include<iostream>
#include<conio.h>
#include<stdlib.h>

int cost[10][10],i,j,k,n,stk[10],top,v,visit[10],visited[10],u;

void main()
{
int m,c;
cout <<"enterno of vertices";
cin >> n;
cout <<"ente no of edges";
cin >> m;
cout <<"\nEDGES Cost\n";
for(k=1;k<=m;k++)
{
cin >>i>>j>>c;
cost[i][j]=c;
}
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(cost[i][j]==0)
cost[i][j]=31999;

cout <<"ORDER OF VISITED VERTICES";
k=1;
while(k<n)
{
m=31999;
if(k==1)
{
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
if(cost[i][j]<m)
{
m=cost[i][j];
u=i;
}
}
else
{
for(j=n;j>=1;j--)
if(cost[v][j]<m && visited[j]!=1 && visit[j]!=1)
{
visit[j]=1;
stk[top]=j;
top++;
m=cost[v][j];
u=j;
}
}
cost[v][u]=31999;
v=u;
cout<<v << " ";
k++;
visit[v]=0; visited[v]=1;
}
}

OUTPUT
enterno of vertices7
ente no of edges9
EDGES Cost
1 6 10
6 5 25
5 4 22
4 3 12
3 2 16
2 7 14
5 7 24
4 7 18
1 2 28
ORDER OF VISITED VERTICES1 6 5 4 3 2


7) Write a C++ Program for an AVL Tree  Implementation ?   
ans:

/*C++ program to implement AVL Tree & its Operations*/
#include <iostream.h>
#include <stdlib.h>
#include<constream.h>
#define FALSE 0
#define TRUE 1
struct AVLNode
{
int data ;
int balfact ;
AVLNode *left ;
AVLNode *right ;
} ;

class avltree
{
private :
AVLNode *root ;
public :
avltree( ) ;
AVLNode*  insert ( int data, int *h ) ;
static AVLNode* buildtree ( AVLNode *root, int data, int *h ) ;
void display( AVLNode *root ) ;
AVLNode* deldata ( AVLNode* root, int data, int *h ) ;
static AVLNode* del ( AVLNode *node, AVLNode* root, int *h ) ;
static AVLNode* balright ( AVLNode *root, int *h ) ;
static AVLNode* balleft ( AVLNode* root, int *h ) ;
void setroot ( AVLNode *avl ) ;
~avltree( ) ;
static void deltree ( AVLNode *root ) ;
} ;
avltree :: avltree( )
{
root = NULL ;
}
AVLNode* avltree :: insert ( int data, int *h )
{
root = buildtree ( root, data, h ) ;
return root ;
}
AVLNode* avltree :: buildtree ( AVLNode *root, int data, int *h )
{
AVLNode *node1, *node2 ;

if ( root == NULL )
{
root = new AVLNode ;
root -> data = data ;
root -> left = NULL ;
root -> right = NULL ;
root -> balfact = 0 ;
*h = TRUE ;
return ( root ) ;
}
if ( data < root -> data )
{
root -> left = buildtree ( root -> left, data, h ) ;

// If left subtree is higher
if ( *h )
{
switch ( root -> balfact )
{
case 1 :
node1 = root -> left ;
if ( node1 -> balfact == 1 )
{
cout << "\nRight rotation." ;
root -> left = node1 -> right ;
node1 -> right = root ;
root -> balfact = 0 ;
root = node1 ;
}
else
{
cout << "\nDouble rotation, left then right." ;
node2 = node1 -> right ;
node1 -> right = node2 -> left ;
node2 -> left = node1 ;
root -> left = node2 -> right ;
node2 -> right = root ;
if ( node2 -> balfact == 1 )
root -> balfact = -1 ;
else
root -> balfact = 0 ;
if ( node2 -> balfact == -1 )
node1 -> balfact = 1 ;
else
node1 -> balfact = 0 ;
root = node2 ;
}
root -> balfact = 0 ;
*h = FALSE ;
break ;

case 0 :
root -> balfact = 1 ;
break ;
case -1 :
root -> balfact = 0 ;
*h = FALSE ;
}
}
}

if ( data > root -> data )
{
root -> right = buildtree ( root -> right, data, h ) ;

if ( *h )
{
switch ( root -> balfact )
{
case 1 :
root -> balfact = 0 ;
*h = FALSE ;
break ;
case 0 :
root -> balfact = -1 ;
break ;
case -1 :
node1 = root -> right ;
if ( node1 -> balfact == -1 )
{
cout << "\nLeft rotation." ;
root -> right = node1 -> left ;
node1 -> left = root ;
root -> balfact = 0 ;
root = node1 ;
}
else
{
cout << "\nDouble rotation, right then left." ;
node2 = node1 -> left ;
node1 -> left = node2 -> right ;
node2 -> right = node1 ;
root -> right = node2 -> left ;
node2 -> left = root ;
if ( node2 -> balfact == -1 )
root -> balfact = 1 ;
else
root -> balfact = 0 ;
if ( node2 -> balfact == 1 )
node1 -> balfact = -1 ;
else
node1 -> balfact = 0 ;
root = node2 ;
}
root -> balfact = 0 ;
*h = FALSE ;
}
}
}
return ( root ) ;
}
void avltree :: display ( AVLNode* root )
{
if ( root != NULL )
{
display ( root -> left ) ;
cout << root -> data << "\t" ;
display ( root -> right ) ;
}
}
AVLNode* avltree :: deldata ( AVLNode *root, int data, int *h )
{
AVLNode *node ;
if ( root -> data == 13 )
cout << root -> data ;
if ( root == NULL )
{
cout << "\nNo such data." ;
return ( root ) ;
}
else
{
if ( data < root -> data )
{
root -> left = deldata ( root -> left, data, h ) ;
if ( *h )
root = balright ( root, h ) ;
}
else
{
if ( data > root -> data )
{
root -> right = deldata ( root -> right, data, h ) ;
if ( *h )
root = balleft ( root, h ) ;
}
else
{
node = root ;
if ( node -> right == NULL )
{
root = node -> left ;
*h = TRUE ;
delete ( node ) ;
}
else
{
if ( node -> left == NULL )
{
root = node -> right ;
*h = TRUE ;
delete ( node ) ;
}
else
{
node -> right = del ( node -> right, node, h ) ;
if ( *h )
root = balleft ( root, h ) ;
}
}
}
}
}
return ( root ) ;
}
AVLNode* avltree :: del ( AVLNode *succ, AVLNode *node, int *h )
{
AVLNode *temp = succ ;

if ( succ -> left != NULL )
{
succ -> left = del ( succ -> left, node, h ) ;
if ( *h )
succ = balright ( succ, h ) ;
}
else
{
temp = succ ;
node -> data = succ -> data ;
succ = succ -> right ;
delete ( temp ) ;
*h = TRUE ;
}
return ( succ ) ;
}
AVLNode* avltree :: balright ( AVLNode *root, int *h )
{
AVLNode *temp1, *temp2 ;
switch ( root -> balfact )
{
case 1 :
root -> balfact = 0 ;
break ;
case 0 :
root -> balfact = -1 ;
*h  = FALSE ;
break ;
case -1 :
temp1 = root -> right ;
if ( temp1 -> balfact <= 0 )
{
cout << "\nLeft rotation." ;
root -> right = temp1 -> left ;
temp1 -> left = root ;
if ( temp1 -> balfact == 0 )
{
root -> balfact = -1 ;
temp1 -> balfact = 1 ;
*h = FALSE ;
}
else
{
root -> balfact = temp1 -> balfact = 0 ;
}
root = temp1 ;
}
else
{
cout << "\nDouble rotation, right then left." ;
temp2 = temp1 -> left ;
temp1 -> left = temp2 -> right ;
temp2 -> right = temp1 ;
root -> right = temp2 -> left ;
temp2 -> left = root ;
if ( temp2 -> balfact == -1 )
root -> balfact = 1 ;
else
root -> balfact = 0 ;
if ( temp2 -> balfact == 1 )
temp1 -> balfact = -1 ;
else
temp1 -> balfact = 0 ;
root = temp2 ;
temp2 -> balfact = 0 ;
}
}
return ( root ) ;
}
AVLNode* avltree :: balleft ( AVLNode *root, int *h )
{
AVLNode *temp1, *temp2 ;
switch ( root -> balfact )
{
case -1 :
root -> balfact = 0 ;
break ;

case 0 :
root -> balfact = 1 ;
*h = FALSE ;
break ;

case 1 :
temp1 = root -> left ;
if ( temp1 -> balfact >= 0 )
{
cout << "\nRight rotation." ;
root -> left = temp1 -> right ;
temp1 -> right = root ;

if ( temp1 -> balfact == 0 )
{
root -> balfact = 1 ;
temp1 -> balfact = -1 ;
*h = FALSE ;
}
else
{
root -> balfact = temp1 -> balfact = 0 ;
}
root = temp1 ;
}
else
{
cout << "\nDouble rotation, left then right." ;
temp2 = temp1 -> right ;
temp1 -> right = temp2 -> left ;
temp2 -> left = temp1 ;
root -> left = temp2 -> right ;
temp2 -> right = root ;
if ( temp2 -> balfact == 1 )
root -> balfact = -1 ;
else
root -> balfact = 0 ;
if ( temp2-> balfact == -1 )
temp1 -> balfact = 1 ;
else
temp1 -> balfact = 0 ;
root = temp2 ;
temp2 -> balfact = 0 ;
}
}
return ( root ) ;
}
void avltree :: setroot ( AVLNode *avl )
{
root = avl ;
}
avltree :: ~avltree( )
{
deltree ( root ) ;
}


void avltree :: deltree ( AVLNode *root )
{
if ( root != NULL )
{
deltree ( root -> left ) ;
deltree ( root -> right ) ;
}
delete ( root ) ;
}
void main( )
{
avltree at ;
AVLNode *avl = NULL ;
int h ;
clrscr();
avl = at.insert ( 20, &h ) ;
at.setroot ( avl ) ;
avl = at.insert ( 6, &h ) ;
at.setroot ( avl ) ;
avl = at.insert ( 29, &h ) ;
at.setroot ( avl ) ;
avl = at.insert ( 5, &h ) ;
at.setroot ( avl ) ;
avl = at.insert ( 12, &h ) ;
at.setroot ( avl ) ;
avl = at.insert ( 25, &h ) ;
at.setroot ( avl ) ;
avl = at.insert ( 32, &h ) ;
at.setroot ( avl ) ;
avl = at.insert ( 10, &h ) ;
at.setroot ( avl ) ;
avl = at.insert ( 15, &h ) ;
at.setroot ( avl ) ;
avl = at.insert ( 27, &h ) ;
at.setroot ( avl ) ;
avl = at.insert ( 13, &h ) ;
at.setroot ( avl ) ;
cout << endl << "AVL tree:\n" ;
at.display ( avl ) ;
avl = at.deldata ( avl, 20, &h ) ;
at.setroot ( avl ) ;
avl = at.deldata ( avl, 12, &h ) ;
at.setroot ( avl ) ;
cout << endl << "AVL tree after deletion of a node:\n" ;
at.display ( avl ) ;
getch();
}
/*
*/

Wednesday, 7 March 2012

1. chapter(Object Orient Programming Methodology & Intro. to C++

1. chapter(Object Orient Programming Methodology & Intro. to C++

/* Just read it Don't copy because these are the explanation about some of the topics which I was not covered, but it is useful when you attend any interview */
(1)    whats a preprocessor in c

Preprocessor directives are lines included in the code of our programs that are not program statements but directives for the preprocessor. These lines are always preceded by a hash sign (#). The preprocessor is executed before the actual compilation of code begins, therefore the preprocessor digests all these directives before any code is generated by the statements.

These preprocessor directives extend only across a single line of code. As soon as a newline character is found, the preprocessor directive is considered to end. No semicolon (;) is expected at the end of a preprocessor directive. The only way a preprocessor directive can extend through more than one line is by preceding the newline character at the end of the line by a backslash (\).

macro definitions (#define, #undef)
Conditional inclusions (#ifdef, #ifndef, #if, #endif, #else and #elif)
Line control (#line)
Error directive (#error)
Source file inclusion (#include)
Pragma directive (#pragma)




(1)    what are all Program compilation steps in c language

When programmers talk about creating programs, they often say, "it compiles fine" or, when asked if the program works, "let's compile it and see". This colloquial usage might later be a source of confusion for new programmers. Compiling isn't quite the same as creating an executable file! Instead, creating an executable is a multistage process divided into two components: compilation and linking. In reality, even if a program "compiles fine" it might not actually work because of errors during the linking phase. The total process of going from source code files to an executable might better be referred to as a build.
Compilation
Compilation refers to the processing of source code files (.c, .cc, or .cpp) and the creation of an 'object' file. This step doesn't create anything the user can actually run. Instead, the compiler merely produces the machine language instructions that correspond to the source code file that was compiled. For instance, if you compile (but don't link) three separate files, you will have three object files created as output, each with the name .o or .obj (the extension will depend on your compiler). Each of these files contains a translation of your source code file into a machine language file -- but you can't run them yet! You need to turn them into executables your operating system can use. That's where the linker comes in.
Linking
Linking refers to the creation of a single executable file from multiple object files. In this step, it is common that the linker will complain about undefined functions (commonly, main itself). During compilation, if the compiler could not find the definition for a particular function, it would just assume that the function was defined in another file. If this isn't the case, there's no way the compiler would know -- it doesn't look at the contents of more than one file at a time. The linker, on the other hand, may look at multiple files and try to find references for the functions that weren't mentioned.

You might ask why there are separate compilation and linking steps. First, it's probably easier to implement things that way. The compiler does its thing, and the linker does its thing -- by keeping the functions separate, the complexity of the program is reduced. Another (more obvious) advantage is that this allows the creation of large programs without having to redo the compilation step every time a file is changed. Instead, using so called "conditional compilation", it is necessary to compile only those source files that have changed; for the rest, the object files are sufficient input for the linker. Finally, this makes it simple to implement libraries of pre-compiled code: just create object files and link them just like any other object file. (The fact that each file is compiled separately from information contained in other files, incidentally, is called the "separate compilation model".)

To get the full benefits of condition compilation, it's probably easier to get a program to help you than to try and remember which files you've changed since you last compiled. (You could, of course, just recompile every file that has a timestamp greater than the timestamp of the corresponding object file.) If you're working with an integrated development environment (IDE) it may already take care of this for you. If you're using command line tools, there's a nifty utility calledmake that comes with most *nix distributions. Along with conditional compilation, it has several other nice features for programming, such as allowing different compilations of your program -- for instance, if you have a version producing verbose output for debugging.

Knowing the difference between the compilation phase and the link phase can make it easier to hunt for bugs. Compiler errors are usually syntactic in nature -- a missing semicolon, an extra parenthesis. Linking errors usually have to do with missing or multiple definitions. If you get an error that a function or variable is defined multiple times from the linker, that's a good indication that the error is that two of your source code files have the same function or variable. 



The compilation Process





All 5 stages are implemented by one program in UNIX, namely cc, or in our case, gcc (or g++). The general order of things goes gcc -> gcc -E -> gcc -S -> as -> ld.